Application of Machine Learning Techniques to High-Dimensional Clinical Data to Forecast Postoperative Complications
نویسندگان
چکیده
OBJECTIVE To compare performance of risk prediction models for forecasting postoperative sepsis and acute kidney injury. DESIGN Retrospective single center cohort study of adult surgical patients admitted between 2000 and 2010. PATIENTS 50,318 adult patients undergoing major surgery. MEASUREMENTS We evaluated the performance of logistic regression, generalized additive models, naïve Bayes and support vector machines for forecasting postoperative sepsis and acute kidney injury. We assessed the impact of feature reduction techniques on predictive performance. Model performance was determined using the area under the receiver operating characteristic curve, accuracy, and positive predicted value. The results were reported based on a 70/30 cross validation procedure where the data were randomly split into 70% used for training the model and the 30% for validation. MAIN RESULTS The areas under the receiver operating characteristic curve for different models ranged between 0.797 and 0.858 for acute kidney injury and between 0.757 and 0.909 for severe sepsis. Logistic regression, generalized additive model, and support vector machines had better performance compared to Naïve Bayes model. Generalized additive models additionally accounted for non-linearity of continuous clinical variables as depicted in their risk patterns plots. Reducing the input feature space with LASSO had minimal effect on prediction performance, while feature extraction using principal component analysis improved performance of the models. CONCLUSIONS Generalized additive models and support vector machines had good performance as risk prediction model for postoperative sepsis and AKI. Feature extraction using principal component analysis improved the predictive performance of all models.
منابع مشابه
Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کاملBehavioral Analysis of Traffic Flow for an Effective Network Traffic Identification
Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملMammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease
Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کامل